Defining the dynamin-based ring organizing center on the peroxisome-dividing machinery isolated from Cyanidioschyzon merolae.
نویسندگان
چکیده
Organelle division is executed through contraction of a ring-shaped supramolecular dividing machinery. A core component of the machinery is the dynamin-based ring conserved during the division of mitochondrion, plastid and peroxisome. Here, using isolated peroxisome-dividing (POD) machinery from a unicellular red algae, Cyanidioschyzon merolae, we identified a dynamin-based ring organizing center (DOC) that acts as an initiation point for formation of the dynamin-based ring. C. merolae contains a single peroxisome, the division of which can be highly synchronized by light-dark stimulation; thus, intact POD machinery can be isolated in bulk. Dynamin-based ring homeostasis is maintained by the turnover of the GTP-bound form of the dynamin-related protein Dnm1 between the cytosol and division machinery via the DOC. A single DOC is formed on the POD machinery with a diameter of 500-700 nm, and the dynamin-based ring is unidirectionally elongated from the DOC in a manner that is dependent on GTP concentration. During the later step of membrane fission, the second DOC is formed and constructs the double dynamin-based ring to make the machinery thicker. These findings provide new insights to define fundamental mechanisms underlying the dynamin-based membrane fission in eukaryotic cells.
منابع مشابه
Hierarchal order in the formation of chloroplast division machinery in the red alga Cyanidioschyzon merolae
Chloroplasts have evolved from a cyanobacterial endosymbiont and multiply by dividing. Chloroplast division is performed by constriction of the ring-like protein complex (the PD machinery), which forms at the division site. The PD machinery is composed of cyanobacteria-descended components such as FtsZ and eukaryote-derived proteins such as the dynamin-related protein, DRP5B. In the red alga Cy...
متن کاملWD40 protein Mda1 is purified with Dnm1 and forms a dividing ring for mitochondria before Dnm1 in Cyanidioschyzon merolae.
Mitochondria are not produced de novo but are maintained by division. Mitochondrial division is a coordinated process of positioning and constriction of the division site and fission of double membranes, in which dynamin-related protein is believed to mediate outer membrane fission. Part of the mitochondrial division machinery was purified from M phase-arrested Cyanidioschyzon merolae cells thr...
متن کاملA plant-specific dynamin-related protein forms a ring at the chloroplast division site.
Chloroplasts have retained the bacterial FtsZ for division, whereas mitochondria lack FtsZ except in some lower eukaryotes. Instead, mitochondrial division involves a dynamin-related protein, suggesting that chloroplasts retained the bacterial division system, whereas a dynamin-based system replaced the bacterial system in mitochondria during evolution. In this study, we identified a novel plan...
متن کاملDynamic recruitment of dynamin for final mitochondrial severance in a primitive red alga.
Dynamins are a eukaryote-specific family of GTPases. Some family members are involved in diverse and varied cellular activities. Here, we report that the primitive red alga Cyanidioschyzon merolae retains only one dynamin homolog, CmDnm1, belonging to the mitochondrial division subfamily. Previously, the bacterial cell division protein, FtsZ, was shown to localize at the mitochondrial division ...
متن کاملPlastid division is driven by a complex mechanism that involves differential transition of the bacterial and eukaryotic division rings.
During plastid division, two structures have been detected at the division site in separate analyses. The plastid-dividing ring can be detected by transmission electron microscopy as two (or three) electron-dense rings: an outer ring on the cytosolic face of the outer envelope, occasionally a middle ring in the intermembrane space, and an inner ring on the stromal face of the inner envelope. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 130 5 شماره
صفحات -
تاریخ انتشار 2017